Biography

Dr. Yang DU obtained his Ph.D. degree from University of Science and Technology of China in 2011. He then went to Department of Molecular and Cellular Physiology at Stanford University, where he worked as a postdoctoral scholar on G protein-coupled receptors (GPCRs) mentored by Nobel Laureate Prof. Brian Kobilka. In 2016, he was promoted to staff-level Research Scientist at Stanford Medical Center until early 2019. During the period, he was awarded with Postdoctoral Fellowship of the American Heart Association and the Stanford Cardiovascular Institute. In late 2017, he was also offered with the position of tenure-track Assistant Professor in Pharmacology Department of the University of Michigan, Ann Arbor (gratefully declined). He mainly uses β2-adrenergic receptor as model receptor of GPCRs to study the structure, function and pharmacological properties of GPCR complexes with downstream signaling molecules. As the largest membrane protein superfamily in the human genome, GPCRs are the most and important drug targets (accounting for 40-50% in the market). To date he has 36 high-impact scientific publications (10 first-authored including 2 in Cell, 2 in JACS, 1 in Chem. Sci. at Stanford) including in multiple top-tier international journals such as Cell, Nature, JACS, and Chem. Sci.

Dr. Du is now a tenure-track Assistant Professor and Doctoral advisor at School of Life and Health Sciences of The Chinese University of Hong Kong, Shenzhen. He also serves as a Principal Investigator in the Kobilka Institute of Innovative Drug Discovery (KIIDD), where he will lead a research group to continue his basic/translational research on GPCRs for novel therapeutics development in the future.


Academic Publications

36 Du Y*, Duc NM*, Rasmussen SGF*, Hilger D, Kubiak X, Wang L, Kim HR, Wegrecki M, Asuru A, Jeong KM, Lee J, Chance M, Lodowski DT, Kobilka BK, Chung KY. Assembly of a GPCR-G protein complex. Cell (2019) 177(5):1232-1242

35 Liu X, Xu X, Hilger D, Aschauer P, Tiemann JKS, Du Y, Liu H, Hirata K, Sun X, Guixa-Gonzalez R, Mathiesen JM, Hidebrand PW, Kobilka BK. Structural insights into the process of GPCR-G protein complex formation. Cell (2019) 177(5):1243-1251

34 Komolov KE*, Du Y* (* co-first author), Duc NM, Betz R, Rodrigues J, Leib RD, Patra D, Skiniotis G, Adams CM, Dror R, Chung KY, Kobilka BK, Benovic JL. Structural and functional analysis of a β2-Adrenergic Receptor Complex with GRK5. Cell (2017) 169: 407-421 –Selected as the Featured Article of the Issue

Recommended by F1000Prime: f1000.com/prime/727537208

33 Das M*, Du Y* (* co-first author), Ribeiro O, Hariharan P, Mortensen JS, Patra D, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae, PS. Conformationally preorganized diastereomeric norbornane-based maltosides (NBMs) for membrane protein study: Implications of detergent kink for micellar properties. J. Am. Chem. Soc. (2017) 139: 3072-81

32 Ehsan M*, Du Y* (* co-first author), Scull NJ, Tikhonova E, Tarrasch J, Mortensen JS, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Highly Branched Penta-Saccharide-Bearing Amphiphiles for Membrane Protein Studies. J. Am. Chem. Soc. (2016) 138: 3789-96

31 Sadaf A*, Du Y* (* co-first author), Hariharan P, Mortensen JS, Perez IM, Seven AB, Santillan C, Skiniotis G, Loland CJ, Kobilka BK, Guan L, Byrne B, Chae PS. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein structure study. Chemical Science (2017) 8: 1169-1177

30 Duc NM*, Du Y* (* co-first author), Thorsen TS, Lee SY, Zhang C, Kato H, Kobilka BK, Chung KY. Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry. J. Am. Soc. Mass. Spectrom. (2015) 26: 808-817

29 Strohman MJ, Maeda S, Hilger D, Masureel M, Du Y, Kobilka BK. Local membrane charge regulates β2 adrenergic receptor-Gi interaction. Nature Communications (2019) May 20;10(1):2234

28 Chae PS, Ehsan M, Du Y, Mortensen JS, Hariharan P, Qu Q, Ghani L, Das M, Grethen A, Byrne B, Skiniotis G, Keller S, Loland CJ, Guan L, Kobilka BK. Self-assembly behaviors and application of terphenyl-cored trimaltosides for membrane protein study: Impact of detergent hydrophobic group geometry on protein stability. Chemistry (2019) Jun 26. doi: 10.1002/chem.201902468
27 Ehsan M, Kumar A, Mortensen JS, Du Y, Hariharan P, Byrne B, Guan L, Kobilka BK, Loland CJ, Chae PS. Self-assembly behaviors of a penta-phenylene maltoside and its application for membrane protein study. Chemistry-An Asian Journal (2019) Apr 10. doi: 10.1002/asia.201900224.

26 Das M, Du Y, Mortensen JS, Ramos M, Bae HE, Sadaf A, Byrne B, Guan L, Loland CJ, Kobilka BK, Chae PS. Trehalose-containing nanoassemblies for membrane protein stabilization: Importance of detergent micelle size for GPCR stability. Organic & Biomolecular Chemistry (2019) 17(12):3249-3257. doi: 10.1039/c8ob03153c.

25 Bae HE, Du Y, Hariharan P, Mortensen JS, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Asymmetric maltose neopentyl glycol amphiphiles for a membrane protein study: Effect of detergent asymmetricity on protein stability. Chemical Science (2018) 10(4):1107-1116. doi: 10.1039/c8sc02560f.

24 Hussain H, Hariharan P, Du Y, Mortensen JS, Ehsan M, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. A comparative study of branched and linear mannitol-based amphiphiles on membrane protein stability. Analyst (2018) 143(23):5702-5710. doi: 10.1039/c8an01408f.

23 Das M, Du Y, Mortensen JS, Hariharan P, Lee HS, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Rationally engineered tandem facial amphiphiles for improved membrane protein stabilization efficacy. ChemBioChem (2018) 19(20):2225-2232. doi: 10.1002/cbic.201800388.

22 Das M, Du Y, Mortensen JS, Bae HE, Byrne B, Loland CJ, Kobilka BK, Chae PS. An engineered lithocholate-based facial amphiphile stabilizes membrane proteins: assessing the impact of detergent modularity on protein stability. Chemistry (2018) 24(39):9860-9868. doi: 10.1002/chem.201801141.

21 Ehsan M, Das M, Stern V, Du Y, Mortensen JS, Hariharan P, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. Steroid-based amphiphiles for membrane protein study: Importance of alkyl spacer for protein stability. ChemBioChem (2018) doi: 10.1002/cbic.201800106

20 Ehsan M, Du Y, Molist I, Seven AB, Hariharan P, Mortensen JS, Ghani L, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Vitamin E-based glycoside amphiphiles for membrane protein structural studies. Organic and Biomolecular Chemistry (2018) DOI: 10.1039/c8ob00270c

19 Ehsan M, Ghani L, Du Y, Mortensen JS, Ribeiro O, Hu H, Skiniotis G, Loland CJ, Kobilka BK, Byrne B, Chae PS. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies. Analyst (2017) 142: 3889-3898

18 Hussain H, Du Y, Tikhonova E, Mortensen JS, Ribeiro O, Santillan C, Das M, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Resorcinarene-based facial glycosides: implication of detergent flexibility on membrane protein stability. Chemistry (2017) doi: 10.1002/chem.201605016

17 Hussain H, Mortensen JS, Du Y, Santillan C, Ribeiro O, Go J, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Tandem malonate-based glucosides (TMGs) for membrane protein structural study. Scientific Reports (2017) doi: 10.1039/c6cc06147h

16 Woldring DR, Holec PV, Stern LA, Du Y, Hackel, BJ. A gradient of sitewise diversity promotes evolutionary fitness for binder discovery in a three-helix bundle protein scaffold. Biochemistry (2017) 56: 1656-1671

15 Das M, Du Y, Mortensen JS, Ribeiro O, Loland CJ, Kobilka BK, Byrne B, Chae PS. Butane-1,2,3,4-tetraol-based Amphiphilic Stereoisomers for Membrane Protein Study: Importance of Chirality in the Hydrophobic Region. Chemical Science (2017) 8: 1169-1177

14 Cho KH, Scull NJ, Du Y, Hariharan P, Mortensen JS, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Mesitylene-cored glucoside amphiphiles (MGAs) for membrane protein study: importance of alkyl chain density in detergent efficacy. Chemistry (2016) 10.1002/chem.201603338

13 Bae HE, Mortensen JS, Ribeiro O, Du Y, Ehsan M, Kobilka BK, Loland CJ, Byrne B, Chae PS. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilization. Chemical Communications (2016) 52: 12104-12107

12 Cho KH, Hariharan P, Mortensen JS, Du Y, Nielsen AK, Byrne B, Kobilka BK, Loland CJ, Guan L, Chae PS. Isomeric detergent comparison for membrane proteins stability: importance of inter alkyl chain distance and alkyl chain length. ChemBioChem (2016) 17:2334-2339

11 Carr R 3rd, Schilling J, Song J, Carter RL, Du Y, Yoo SM, Cheung JY, Tilley DG, Benovic JL. β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc. Natl. Acad. Sci. (2016) 113: 4107-16

10 DeVree B, Mahoney J, Velez-Ruiz G, Rasmussen SGF, Kuszak A, Edwald E, Fung JJ, Manglik A, Masureel M, Du Y, Matt R, Pardon E, Steyaert J, Kobilka BK, Sunahara RK. Allosteric coupling from G protein to the agonist binding pocket in GPCRs. Nature. (2016) 535 (7610):182-6

9 Tian X, Irannejad R, Bowman SL, Du Y, Puthenveedu MA, Zastrow M, and Benovic JL. The α-Arrestin ARRDC3 Regulates the Endosomal Residence Time and Intracellular Signaling of the β2-Adrenergic Receptor. J. Biol. Chem. (2016) 291: 14510-25

8 Hussain H, Du Y, Scull NJ, Mortensen JS, Tarrasch J, Loland CJ, Bernadette Byrne B, Kobilka BK, and Chae PS. Accessible mannitol-based amphiphiles (MNAs) for membrane protein solubilisation and stabilization. Chemistry. (2016) 22: 7068-73

7 Cho KH, Du Y, Scull NJ, Hariharan P, Gotfryd K, Loland CJ, Guan L, Byrne B, Kobilka BK, Chae PS. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation. Chemistry. (2015) 21: 10008-13

6 Carr R 3rd, Du Y, Quoyer J, Panettieri RA Jr, Janz JM, Bouvier M, Kobilka BK, Benovic JL. Development and characterization of pepducins as Gs-biased allosteric agonists. J. Biol. Chem. (2014) 289: 35668-84.

5 Du Y, Cheng W, Li WF. Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae. Mol. and Cells. (2012) 34: 127-132.

4 Du Y*, Shi WW*, He YX, Yang YH, Zhou CZ, Chen Y. Structures of the substrate-binding protein provide insights into the multiple compatible solutes binding specificities of Bacillus subtilis ABC transporter OpuC. Biochemical J. (2011) 436: 283-289.

3 Du Y*, He YX*, Zhang ZY, Yang YH, Shi WW, Frolet C, Di Guilmi AM, Vernet T, Zhou CZ, and Chen Y. Crystal structure of the mucin-binding protein of Spr1345 from Streptococcus pneumoniae. J. of Struct. Biol. 2011, 174: 252-257.

2 Du Y, He YX, Gaowa S, Zhang X, Chen Y, Zhang SC, Zhou CZ. Crystal structures of the apo and GDP-bound forms of a cupin-like protein BbDUF985 from Branchiostoma belcheri tsingtauense. Proteins. 2010, 78(12): 2714-9.

1 He YX, Gui L, Liu YZ, Du Y, Zhou Y, Li P, Zhou CZ. Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly. Proteins. 2009, 76(1): 249-54.