Biography

Prof Zheng received his PhD from Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology (HKUST). Before joining CUHKSZ, he was a Visiting Scholar at HKUST (2011-2012), an Alexander von Humboldt Research Fellow at Leibniz Institute of Polymer Research Dresden Germany (2013-2015), and a Research Assistant Professor of the Department of Mechanical and Aerospace Engineering and Junior Fellow of the Institute for Advanced Study (IAS) at HKUST (2015-2019). 

Research

Prof. Zheng’s research has been focused on multifunctional carbon materials, including synthesis of graphene and graphene oxide, thermal and chemical reduction of graphene oxide, graphene based multifunctional sensors, flexible electronics, energy conversion and storage, surfaces and interfaces of materials, nanocomposites reinforced with nanofillers in various types, and molecular simulations of new carbon materials. He has published more than 60 peer reviewed papers in top-ranked scientific journals including Mater Today, Prog Mater Sci, ACS Nano, Adv Funct Mater, Mater Horiz, Nanoscale Horiz, ACS Appl. Mater. Interfaces, and Carbon.



Advanced carbon materials

 

Many different carbon-based nanostructured materials, including graphene, carbon nanotube and carbon nanofiber have been explored to construct functional materials.   

Wearable sensors

Various design strategies are established for fabricating flexible, wearable sensors by using 1D fibrous, 2D planar and 3D cellular interconnected carbon architectures.

Transparent conductors

The exciting features in almost all modern portable and house-hold electronics are driven by optoelectronics that extensively use transparent conductive films (TCFs) in components, such as touch screens, liquid crystal displays, organic photovoltaic cells and organic light-emitting diodes. Graphene has been developed as an ideal material to replace the existing, expensive indium tin oxide (ITO) as TCFs. Several established approaches, such as chemical doping treatments, use of large size GO sheets, and hybrids with other nanostructured materials, are introduced to improve the optoelectrical performance of graphene-based TCFs.

Multifunctional nanocomposites

lightweight carbon structures with high electrical conductivities and high porosities are developed to realize composites with desired lightweights and multi-functionalities such as energy storage and electromagnetic interference (EMI) shielding.


Awards and Honors
  • 2015
  • 2013
<
  • 01

    2015

    Junior Fellow of Institute for Advanced Study, HKUST

  • 02

    2013

    Alexander von Humboldt Research Fellowship

>
Academic Publications

Full List of Papers:    ResearcherID     Google Scholar 


Representative Publications: 

A) Books


1.      Zheng Q. B., Kim J. K. Graphene for Transparent Conductors: Synthesis, Properties and Applications (ISBN 978-1-4939-2768-5). Springer, New York. 2015, pp. 220.


2.      Xue Q. Z., Zheng Q. B. Computational study on the interfacial characteristics of carbon nanotube reinforced polymer composites (Book chapter). New York: NovaScience Pub Inc (ISBN:978-1-60876-700-7).


B) Publications with peer review process (*: Corresponding author)


1.      Zheng Q. B., Lee J. H., Shen X., Chen X. D., Kim J. K. (2020): Graphene-Based Wearable Piezoresistive Physical Sensors. Materials Today, In press, DOI: 10.1016/j.mattod.2019.12.004.


2.      Guo F. M, Shen X., Zhou J. M., Liu D., Zheng Q. B., Yang J., Jia B., Lau A. K. T., Kim J. K. (2020): Highly Thermally Conductive Dielectric Nanocomposites with Synergistic Alignments of Graphene and Boron Nitride Nanosheets. Advanced Functional Materials, 1910826.


3.      Xiong Y., Chang X., Qiao X., Li K., Zhu L., Xia F., Li X., Zheng Q. B.*, Xing W., Xue Q. Z. (2020):  Co-MOF-74 derived Co3O4/graphene heterojunction nanoscrolls for ppb-level acetone detection. Sensors and Actuators B: Chemical, 300, 127011.


4.      Lee J. H., Kim J. M., Liu D., Guo F. M., Zheng Q. B.*, Jeon S. K., Kim J. K. (2019): Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Advanced Functional Materials, 29, 1901623.


5.      Liu X., Liu D., Lee J. H., Zheng Q. B.*, Du X.H., Zhang X. Y., Xu H. R., Wang Z. Y., Wu Y., Cui J., Mai Y. W., Kim J. K. (2019): Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Applied Materials & Interfaces, 11, 2282-2294.


6.      Zheng Q. B., Liu X., Xu H. R., Cheung M. S., Choi Y. W., Huang H. C., Lei H. Y., Shen X., Wang Z. Y., Wu Y., Kim S. Y., Kim J. K. (2018): Sliced Graphene Foam films for Dual-functional Wearable Strain Sensors and Switches. Nanoscale Horizons, 3, 35-44.


7.      Shen X., Wamg Z. Y., Wu Y., Liu X., He Y. B., Zheng Q. B., Yang Q. H., Kang F. Y., Kim J. K. (2018): Three-Dimensional Multilayer Graphene Web for Polymer Nanocomposites with Exceptional Transport Properties and Fracture Resistance. Materials Horizons, 5, 275-284.


8.      Wang Z. Y., Liu X., Shen X., Han N. M., Wu Y., Zheng Q. B., Jia J. J., Wang N., Kim J. K. (2018): Ultralight graphene honeycomb sandwich for stretchable light-emitting display. Advanced Functional Materials, 28, 1707043.


9.      Han N. M., Wang Z. Y., Shen X., Wu Y., Liu X., Zheng Q. B., Kim T. H., Yang J. L., Kim J. K. (2018): Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 10, 6580–6592.


10.  Wu Y., Wang Z. Y., Shen X., Liu X., Han N. M., Zheng Q. B., Mai Y. W., Kim J. K. (2018): Graphene/Boron Nitride?Polyurethane Microlaminates for Exceptional Dielectric Properties and High Energy Densities. ACS Applied Materials & Interfaces, 26641–26652. 


11.  Huang J. Q., Chong W. G., Zheng Q. B., Xu Z. L., Cui J., Yao S. S., Wang C. W., Kim J. K. (2018): Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries. Electrochimica Acta, 268, 1-9.


12.  Liu X., Tang C., Du X. H., Xiong S., Xi S. Y., Liu Y. F., Shen X., Zheng Q. B.*, Wang Z. Y., Wu Y., Horner A., Kim J. K.* (2017): A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instrument. Materials Horizons, 4, 477-486.


13.  Wu Y., Wang Z. Y., Liu X., Shen X., Zheng Q. B.* Xue Q., Kim J. K.* (2017) Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Applied Materials & Interfaces, 9, 9059-9069.


14.  Wang Z. Y., Han N. M., Wu Y., Liu X., Shen X., Zheng Q. B., Kim J. K. (2017): Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon, 123, 385-394.


15.  Qi H. S., Lu A., Zheng Q. B., Yang Q. L. (2016) Functional polymeric materials based on cellulose. International Journal of Polymer Science, 5176968.


16.  Yang T., Yang J. H., Shi L. F., M?der E. Zheng Q. B.* (2015): Highly flexible transparent conductive graphene /single-walled carbon nanotube nanocomposite films produced by Langmuir–Blodgett assembly. RSC Advances, 5, 23650-23657.


17.  Xia D, Otyepka M, Li X, Liu W., Zheng Q. B. (2015): Carbon-based materials at nanoscale. Journal of Nanomaterials, 750242.


18.  Yang Z. Z., Zheng Q. B., Qiu H. X., Li J., Yang J. H. (2015): A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. New Carbon Materials, 30, 41-47.


19.  Zheng Q. B., Li Y. G., Yang J. H., Kim J. K. (2014): Graphene oxide-based transparent conductive films. Progress in Materials Science, 64, 200-247.


20.  Shi L. F., Yang J. H., Yang T, Qiu H. X., Li J., Zheng Q. B.* (2014): Molecular level controlled fabrication of highly transparent conductive reduced graphene oxide/Silver nanowire hybrid films. RSC Advances, 4, 43270-43277.


21.  Li Y. Y., Yang Z. Z., Qiu H. X., Dai Y. G., Zheng Q. B., Li J., Yang J. H. (2014) Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. Journal of Materials Chemistry A, 2, 14319-14145.


22.  Zheng Q. B., Ma P. C., Shi L. F., Huang Z. D., Li J., Tang Z. H., Yang J. H. (2013): Structure control of ultra-large graphene oxide sheets by Langmuir-Blodgett method. RSC Advances, 14, 4680-4691.


23.  Zheng Q. B., Li Z. G., Yang J. H. (2013): Effects of N doping and NH2 grafting on the mechanical and wrinkling properties of graphene sheets. RSC Advances, 3, 923-929.


24.  Shi L. F., Yang J. H., Huang Z. D., Li J., Tang Y. H., Li Y., Zheng Q. B.* (2013): Fabrication of transparent, flexible conducing graphene thin films via soft transfer printing method. Applied Surface Science, 276,437-446.


25.  Huang, J. H., Zheng, Q. B., Kim, J. K., Li Z. G. (2013): A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosensors & Bioelectronics, 43, 379-383.


26.  Han Z., Tang Z. H., Li P., Yang G. Z., Zheng Q. B., Yang J. H. (2013): Ammonia solution strengthened three-dimentional macro porous aerogel. Nanoscale, 5, 5462-5467.


27.  Yousefi, N., Lin X. Y., Zheng, Q. B., Shen X., Pothnis J. R., Jia J. J., Zussman E., Kim J. K. (2013): Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon, 59, 406-417.


28.  Li J., Yang Z. Z., Qiu H. X., Dai Y. G., Zheng Q. B., Zheng G. P., Yang J. H. (2013): Microwave-assisted simultaneous reduction and titanate treatment of graphene oxide. Journal of Materials Chemistry A, 1, 11451-11456.


29.  Yousefi, N., Gudarzi, M. M., Zheng, Q. B., Lin X. Z., Shen X., Jia J. J., Sharif F., Kim J. K. (2013): Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Composites Part A: Applied Science and Manufacturing, 49, 42-50.


30.  Zheng Q. B., Zhang B., Lin X. Y., Shen X., Yousefi N., Huang Z. D., Li Z. G., Kim J.-K. (2012): Highly transparent and conducting ultralarge graphene oxide/singlewalled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072-25082.


31.  Lin X. Y., Shen X., Zheng Q. B., Yousefi N., Ye L., Mai Y. W., Kim J. -K. (2012): Fabrication of highly-aligned, conductive and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano, 6, 10708-10719.


32.  Ma P. C., Zheng Q. B., Maeder E., Kim J. -K. Behaviour of load transfer in functionalized carbon nanotube/epoxy nanocomposites. (2012): Polymer, 53, 6081-6088.


33.  Huang Z. D., Zhang B., Liang R., Zheng Q. B., Oh S., Lin X. Y., Yousefi N., Kim J.-K. (2012): Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon, 50, 4239-4251.


34.  Yousefi N., Gudarzi M. M., Zheng Q. B., Aboutalebi S. H., Sharif F., Kim J.-K. (2012): Self-alignment and high electrical conductivity of ultralarge graphene oxide/polyurethane nanocomposites. Journal of Materials Chemistry, 22, 12709-12717.


35.  Huang Z. D., Zhang B., Oh S., Zheng Q. B., Lin X. Y., Yousefi N., Kim J.-K. (2012): Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. Journal of Materials Chemistry, 22, 3591-3599.


36.  Zheng Q. B., Ip W. H., Lin X. Y., Yousefi N., Yeung K. K., Li Z. G., Kim J.-K. (2011): Transparent conductive films consisting of ultra-large graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 5, 6039-6051.


37.  Zheng Q. B., Gudarzi M. M., Wang S. J., Geng Y., Li Z. G., Kim J.-K. (2011): Improved electrical and optical characteristics of transparent graphene thin films by acid and doping treatments. Carbon, 49, 2905-2916.


38.  Aboutalebi S. H., Gudarzi M. M., Zheng Q. B., Kim J.-K. (2011): Spontaneous formation of liquid crystal in ultra-large graphene oxide dispersions. Advanced Functional Materials, 21, 2978-2988.


39.  Zhang B., Zheng Q. B., Huang Z. D., Oh S., Kim J.-K. (2011): SnO2-graphene-carbon nanotube mixture for anode material with improved rate capacities. Carbon, 49, 4524-4534.


40.  Geng Y., Zheng Q. B., Kim J.-K. (2011): Effects of stage, intercalant species and expansion technique on exfoliation of graphite intercalation compound into graphene sheets. Journal of Nanoscience and Nanotechnology, 11, 1084-1091.


41.  Zheng Q. B., Geng Y., Wang S. J., Li Z. G., Kim J.-K. (2010): Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 48, 4315-4322.


42.  Zheng Q. B., Li Z. G., Geng Y., Wang S. J., Kim J.-K. (2010): Molecular dynamics study of the effect of chemical functionalization on the elastic properties of graphene sheets. Journal of Nanoscience and Nanotechnology, 10, 7070-7074.


43.  Wang S. J., Geng Y., Zheng Q. B., Kim J.-K. (2010): Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815-1823.


44.  Zheng Q. B., Xia D., Xue Q. Z., Yan K. Y., Gao X. L., Li Q. (2009): Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube–polyethylene composite system. Applied Surface Science, 255, 3534-3543.


45.  Yan K. Y., Xue Q. Z., Zheng Q. B., Xia D., Chen H. J., Xie J. (2009): Radial Collapse of Single-Walled Carbon Nanotubes Induced by the Cu2O Surface. Journal of Physical Chemistry C, 113, 3120-3126.


46.  Xie J., Xue Q. Z., Zheng Q. B., Chen H. J. (2009): Investigation of the interactions between molecules of β-Carotene, Vitamin A and CNTs by MD simulations. Materials Letters, 63, 319-321.


47.  Li Q., Xue Q. Z., Gao X. L., Zheng Q. B. (2009): Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. eXPRESS Polymer Letters, 3, 769-777.


48.  Zheng Q. B., Xue Q. Z., Yan K. Y., Gao X. L., Li Q., Hao L. Z. (2008): Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites. Polymer, 49, 800-808. 


49.  Zheng Q. B., Xue Q. Z., Yan K. Y., Gao X. L., Li Q., Hao L. Z. (2008): Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites. Journal of Applied Physics, 103, 044302.


50.  Chen H. J., Xue Q. Z., Zheng Q. B., Xie J., Yan K. Y. (2008): Influence of nanotube chirality, temperature, and chemical modification on the interfacial bonding between carbon nanotube and polyphenylacetylene. Journal of Physical Chemistry C, 112, 16514-16520.


51.  Li Q., Xue Q. Z., Hao L. Z., Gao X. L., Zheng Q. B. (2008): Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Composites Science and Technology, 68, 2290-2296.


52.  Li Q., Xue Q. Z., Zheng Q. B., Hao L. Z., Gao X. L. (2008): Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Materials Letters, 62, 4229-4231.


53.  Zheng Q. B., Xue Q. Z., Yan K. Y., Hao L. Z., Li Q., Gao X. L. (2007): Investigation of Molecular Interactions between SWNT and Polyethylene/Polypropylene/Polystyrene/Polyaniline Molecules. Journal of Physical Chemistry C, 111, 4628-4637.


54.  Yan K. Y., Xue Q. Z., Zheng Q. B., Hao L. Z. (2007): The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology, 18, 255705.


55.  Gao X. L., Xue Q. Z., Hao L. Z., Zheng Q. B., Li Q. (2007): Ammonia sensitivity of amorphous carbon film/silicon heterojunction. Applied Physics Letters, 91, 122110.


56.  Gao X. L., Xue Q. Z., Hao L. Z., Li Q., Zheng Q. B., Tian P. (2007): Effect of gas pressure on current-voltage characteristics of amorphous carbon film/silicon heterojunction. Applied Physics Letters, 91, 092104.


57.  Hao L. Z., Xue Q. Z., Gao X. L., Li Q., Zheng Q. B., Yan K. Y. (2007): Forward tunneling effect and metal-insulator transition in the BaTiO3 film/Si n-n heterojunction. Applied Physics Letters, 91, 212105.


58.  Hao L. Z., Xue Q. Z., Gao X. L., Li Q., Zheng Q. B., Yan K. Y. (2007): Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction. Journal of Applied Physics, 101, 053718.


59.  Gao X. L., Xue Q. Z., Hao L. Z., Li Q., Zheng Q. B., Yan K. Y. (2007): Abnormal current–voltage characteristics and metal–insulator transition of amorphous carbon film/silicon heterojunction. Physics Letters A, 371, 318-321.